Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.more » « less
-
We propose a workflow for modeling generalized mid-spatial frequency (MSF) errors in optical imaging systems. This workflow enables the classification of MSF distributions, filtering of bandlimited signatures, propagation of MSF errors to the exit pupil, and performance predictions that differentiate performance impacts due to the MSF distributions. We demonstrate the workflow by modeling the performance impacts of MSF errors for both transmissive and reflective imaging systems with near-diffraction-limited performance.more » « less
-
Standard surface specifications for mid-spatial frequency (MSF) errors do not capture complex surface topography and often lose critical information by making simplifying assumptions about surface distribution and statistics. As a result, it is challenging to link surface specifications with optical performance. In this work, we present use of the pupil-difference probability distribution (PDPD) moments to assess general MSF surface errors and show how the PDPD moments relate to the relative modulation.more » « less
-
Point spread function engineering uses specially designed phase plates placed at the exit pupil of an imaging system to reduce defocusing sensitivity. A custom phase plate is typically required for each system to enable extended depth of field imaging, so methods enabling variable extended depth of field imaging are of particular interest. In this paper, we discuss the fabrication of previously designed fixed cubic phase plates and variable phase plate pairs with quartic surface profiles and present a novel application of a point source microscope for performance characterization. Experimental measurements of through-focus point spread functions are compared with predictions to demonstrate and characterize the extended depth of field for both fixed and variable freeform phase plates.more » « less
-
We propose and demonstrate a general design method for refractive two-element systems enabling variable optical performance between two specified boundary conditions. Similar to the Alvarez lens, small, relative lateral shifts in opposite directions are applied to a pair of plano-freeform elements. The surface prescriptions of the boundary lenses and a maximum desired shift between freeform plates are the main design inputs. In contrast to previous approaches, this method is not limited to boundaries with similar optical functions and can enable a wide range of challenging, dynamic functions for both imaging and non-imaging applications. Background theory and design processes are presented both for cases that are conducive to analytical surface descriptions, as well as for non-analytic surfaces that must be described numerically. Multiple examples are presented to demonstrate the flexibility of the proposed method.more » « less
-
Dynamic illumination using tunable freeform arrays can enable spatial light distributions of variable size with high uniformity from non-uniform sources through relatively small opposing lateral shifts applied to the freeform components. We present the design, manufacturing, and characterization of a tunable LED-based illuminator using custom freeform Alvarez arrays with commercially available optics to shorten the manufacturing cycle. The optomechanical design and manufacturing of the Alvarez lens arrays and mounting parts are presented in detail. The optical performance of the system is evaluated and compared with simulation results using a custom camera-based test station. Experimental results demonstrate and confirm the dynamic illumination concept with good uniformity.more » « less
-
Imaging depth of field is shallow in applications with high magnification and high numerical aperture, such as microscopy, resulting in images with in- and out-of-focus regions. Therefore, methods to extend depth of field are of particular interest. Researchers have previously shown the advantages of using freeform components to extend depth of field, with each optical system requiring a specially designed phase plate. In this paper we present a method to enable extended depth-of-field imaging for a range of numerical apertures using freeform phase plates to create variable cubic wavefronts. The concept is similar to an Alvarez lens which creates variable spherical wavefronts through the relative translation of two transmissive elements with XY polynomial surfaces. We discuss design and optimization methods to enable extended depth of field for lenses with different numerical aperture values by considering through-focus variation of the point spread function and compare on- and off-axis performance through multiple metrics.more » « less
-
Vision ray techniques are known in the optical community to provide low-uncertainty image formation models. In this work, we extend this approach and propose a vision ray metrology system that estimates the geometric wavefront of a measurement sample using the sample-induced deflection in the vision rays. We show the feasibility of this approach using simulations and measurements of spherical and freeform optics. In contrast to the competitive technique deflectometry, this approach relies on differential measurements and, hence, requires no elaborated calibration procedure that uses sophisticated optimization algorithms to estimate geometric constraints. Applications of this work are the metrology and alignment of freeform optics.more » « less
-
In the last 10 years, freeform optics has enabled compact and high-performance imaging systems. This article begins with a brief history of freeform optics, focusing on imaging systems, including marketplace emergence. The development of this technology is motivated by the clear opportunity to enable science across a wide range of applications, spanning from extreme ultraviolet lithography to space optics. Next, we define freeform optics and discuss concurrent engineering that brings together design, fabrication, testing, and assembly into one process. We then lay out the foundations of the aberration theory for freeform optics and emerging design methodologies. We describe fabrication methods, emphasizing deterministic computer numerical control grinding, polishing, and diamond machining. Next, we consider mid-spatial frequency errors that inherently result from freeform fabrication techniques. We realize that metrologies of freeform optics are simultaneously sparse in their existence but diverse in their potential. Thus, we focus on metrology techniques demonstrated for the measurement of freeform optics. We conclude this review with an outlook on the future of freeform optics.more » « less
An official website of the United States government
